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Diversity of plasma structures, which degenerates in the ideal magnetohydrodynamic model, can
emerge in many ways in a two-fluid plasma endowed with a hierarchy of scales. We study the
equilibrium structure of high-beta !high temperature and low-density" electrons in a relatively weak
magnetic field. Spontaneous flow generation and strong diamagnetism are clear manifestations of
the nonideal two-fluid dynamics scaled, respectively, by the ion and electron-inertia lengths !skin
depths". The theory predicts stronger flow and diamagnetism in the nonlinear regime of the two-fluid
dynamics. © 2010 American Institute of Physics. #doi:10.1063/1.3505821$

I. INTRODUCTION

The scale invariant ideal magnetohydrodynamic !MHD"
model cannot capture the richness of the structures built
around various physical scales !gyroradii, inertial lengths, or
skin depths associated with different plasma constituents"
present in a plasma. Unlike a neutral fluid for which only the
collisional viscosity, by introducing an intrinsic scale !the
Kolmogorov scale", breaks the scale invariance of the ideal
fluid model, the scale invariance of a plasma may be broken
by a variety of nondissipative yet nonideal effects. The con-
sequential “nonideal” dynamics can be replete with struc-
tures reflecting a possible hierarchy of the intrinsic scales.

The unified form of matter and electromagnetic field
coupling, formulated and described in Ref. 1, delineates how
the effective forces enter plasma dynamics !to be reviewed in
Sec. II". Mathematically, such nonideal scale-specific effects
appear as singular perturbations; the equations of motion
will contain a higher-order derivative term multiplied by a
small coefficient.2

The aim of this paper is to examine, theoretically as well
as experimentally, the scale dependent generalizations !gen-
erally referred to as two-fluid effects" of the simplest MHD
models. In particular, we will examine the accessible equi-
librium structures in the hierarchy of scales furnished by ion-
inertia and electron-inertia; the physical parameters of the
plasma may make either of the scales as the determinant of
the structure.

Recent experiment on the RT-1 device !see Fig. 1" sheds
light on these regimes of plasma confinement.3 Spontaneous
flow generation and strong diamagnetism !confinement of
very high-beta plasma" are clear manifestations of these non-
ideal effects. Observations pertaining to the present work are
summarized as follows !see also the observations on a
similar-geometry device LDX":4

!1" Low-density operation. The RT-1 device can operate at
relatively low-density n0!1017 m−3 !see Fig. 2". The
corresponding ion-inertia length "i is of the order of 1
m, while the length scale L0 of the equilibrium structure
!scaling the gradient in the pressure or magnetic field" is

0.05–0.2 m. The plasma is then freed from the ideal
MHD constraints, leading to a “decoupling” of the ion
and electron fluids.

!2" Hot electrons. On RT-1, electrons are heated by ECH up
to Te=10–30 keV, producing very high-beta values
!see Fig. 2". However, ions are left cold !Ti!10 eV",
because no direct heating is applied for ions and the
collisional heat transfer from very hot and low-density
electrons is very small. The molar enthalpy !enthalpy
per particle" of electrons is estimated to be
he!10−14 J. Confinement of such a large thermal en-
ergy produces a strong diamagnetism.

!3" Electric potential and ion flow. Near the boundary, the
plasma is negatively charged !#%−10 to −20 V". The
potential gradient changes sign deep inside the plasma
!though inside probe measurement is limited to low tem-
perature operations"; see Fig. 3. We observe spontaneous
ion flow with a speed Vi!104 m /s in the ion diamag-
netic direction; see Fig. 4.

These experimental results require, at least, a two-fluid
theory to interpret the basic properties. The rest of the paper
is organized as follows. In Sec. II, we display the basic equa-
tions of the two-fluid !electron-ion" plasma in a succinct uni-
fied form.1 By normalizing variables, we delineate the scale
hierarchy dictated by the relation among the cyclotron and
plasma frequencies of both electrons and ions. In Sec. III, we
study the aspects of dynamics that are dominated by the
ion-inertia scale and discuss the spontaneous ion flow. Sec-
tion IV is devoted to investigating the physics pertinent to
scales set by the electron-inertia regime. Electron-inertia dic-
tates the plasma edge region and turns out to be a source of
strong diamagnetism.

II. TWO-FLUID EQUILIBRIA

A. Two-fluid model and Bernoulli–Beltrami conditions

For simplicity, we consider a quasineutral plasma with
singly charged ions. The ions !with charge qi=e and mass
mi" and electrons !with charge qe=−e and mass me" have the
same density n. Introducing generalized electromagnetic
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fields !we mark them by “tilde;” these fields must be distin-
guished from the later introduced normalized variables de-
noted by “hat” and “check”", the equation of motion for the
species j can be written as1

qj!E j̃ + V j $ B j̃" = 0, !1"

where

E j̃ = − #tA j̃ − $#̃, B j̃ = $ $ A j̃ , !2"

and with the generalized four potentials

#̃ = # +
1
qj
&1

2
mjVj

2 + hj', A j̃ = A +
mj

qj
V j !3"

!or qj#̃ is the effective Hamiltonian, and qjA j̃ is the canoni-
cal momentum". We note that the generalized electric force
qjE j̃ includes the kinetic !inertial" and thermal !pressure"
forces and the generalized magnetic force qjV j $B j̃ includes
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FIG. 1. !Color online" Schematic illustration of the RT-1 device. A dipole
magnetic field is produced by the levitating superconducting ring magnet.
The field strength in the confinement region varies from 0.5 to 0.01 T.
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FIG. 2. !Color online" Hot-electron low-density high-beta plasma on RT-1.
With levitating the superconducting ring magnet, significant improvement of
the confinement is observed in !a" the peak beta !estimated by diamagnetic
signals" and !b" the average density !interferometry of microwave transmit-
ted through a horizontal line passing near the magnet". The horizontal axis is
the ECH !2.45 GHz" power.
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FIG. 3. !Color online" Experimental relation between the ion temperature
and the ion flow velocity !in the toroidal direction", which were measured by
the spectroscopy of He!II" lines !%%468.6 nm"; for this experiment, we
produced He plasma. In the figure, the solid and dashed lines show the
simple estimate of the ion diamagnetic drift velocity !5 /2"Ti / !BL" with
B=2$10−2 T, L=0.2 m !solid line" and L=0.1 m !dashed line"; see Sec.
III B.
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FIG. 4. !Color online" Experimental observation of the internal space po-
tential !measured by an inserted high-impedance Langmuir probe". The
measurement is possible only for relatively low temperature plasma !in this
measurement, the maximum beta is around 0.003". In a higher beta plasma,
we also observe negative potential #=−10 to −20 V in the peripheral re-
gion !r=80–100 cm", while the potential deeper inside is not directly
measurable.
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the Coriolis force.5 Here we have used a barotropic relation
to write $pj /n=$hj !pj: pressure, hj: molar enthalpy". We
assume the ideal equation of state with the internal energy
density nE j = pj / !&−1" !&=5 /3: specific heat ratio".6 Then,

hj =
#!nE j"

#n
=

&

& − 1
p

n
=

5
2

Tj . !4"

Note that the generalized electric field, −qj#tA j̃ =−qj#tA
−mj#tV j, is made up of the induction electric force and the
inertia force. In equilibrium states, the solutions to the sys-
tem !1" with #t=0, the generalized electric field !without the
inertia terms" balances the generalized magnetic force.

Simultaneous vanishing of both the generalized electric
and magnetic forces,

E j̃ = 0, V j $ B j̃ = 0, !5"

yields a very interesting class of equilibrium solutions of Eq.
!1". In Sec. III A, we shall discuss the Bernoulli–Beltrami
equilibria defined by these two equations, known, respec-
tively, as Bernoulli and Beltrami conditions.7–9 The reader is
also referred to Ref. 10 for a wider application of the
Bernoulli–Beltrami condition in the theory of diamagnetism.

B. Scale hierarchy

We may delineate the scale hierarchy of the two-fluid
system by normalizing the variables in Eq. !1". It is conve-
nient to write two different sets of normalized equations, one
suited to highlight the ion-inertia scale and the other to do
the same for the electron-inertia scale.

The system is normalized in terms of length L0 !=system
size", velocity V0, magnetic field B0, density n0, and a refer-
ence energy density E0=mV0

2, where m=mi !ion mass" for the
first set highlighting the ion-inertia regime !see Sec. III A"
and m=me !electron mass" for the second set pertaining to
the electron-inertia regime !see Sec. IV A". The normalized
variables are defined by

x = L0x̂, t = !L0/V0"t̂ ,

V j = V0V ĵ, B = B0B̂, n = n0n̂ ,

A = L0B0Â ,

hj = E0hĵ, e# = E0#̂ ,

and the frequencies 'cj !cyclotron frequency" and 'pj
!plasma frequency" will be evaluated at B0 and n0.

For the set pertinent to the ion-inertia regime, we choose
m=mi; the two-fluid system !1" then reads !assuming #t=0"

$̂&#̃ − hê − (
V̂e

2

2
' = Vê $ ($̂ $ & Â

)i
− (Vê') , !6"

$̂&#̂ + hî +
V̂i

2

2
' = Vî $ ($̂ $ & Â

)i
+ Vî') , !7"

where

( =
me

mi
, )i =

V0/'ci

L0
. !8"

In this regime, it is often convenient to choose V0=VA

=B0 /**0min0, the Alfvén speed. Then, )i="i /L0 with the
ion-inertia length

"i =
VA

'ci
=

c

'pi
=* mi

*0ne2 .

The conventional beta ratio !of each species" reads as

+ j +
pj

B2/!2*0"
=

2&

& − 1
n̂hĵ

B̂2
. !9"

When we study the electron-inertia regime, equilibrium
equations become more transparent with the choice m=me.
The appropriate normalized equations, in the new normal-
ized variables, are !now marked by “check”"

$̌&#̌ − ȟe −
V̌e

2

2
' = V̌e $ ($̌ $ & Ǎ

)e
− V̌e') , !10"

$̌&#̌ + ȟi + (−1 V̌i
2

2
' = V̌i $ ($̌ $ & Â

)e
+ (−1V̌i') , !11"

where

)e =
V0/'ce

L0
. !12"

In Sec. IV, we will choose V0=c to study the electron-inertia
regime.

III. SPONTANEOUS ION FLOW

A. Ion-inertia „Hall MHD… regime

The study of the ion-inertia regime can be effectively
conducted in the Hall MHD model obtained by neglecting
the electron-inertia !(=0" in systems !6" and !7". Conven-
tional Hall MHD system is obtained by the replacement
Ve=Vi− j / !en" where the electric current density
j=*0

−1$ $B when the displacement current is neglected.
The equilibrium conditions !6" and !7" reduce to

$̂!#̂ − hê" = &Vî

)i
−

$̂ $ B̂

n̂
' $ B̂ , !13"

$̂&#̂ + hî +
V̂i

2

2
' = Vî $ & B̂

)i
+ $̂ $ Vî' . !14"

MHD (scale-free) limit. In the limit of )i→0, the term of
order )i

−1 yields

Vî $ B̂ = 0,

implying that the static ion flow, if any, must be aligned with
the magnetic field.11 Subtracting Eq. !13" from Eq. !14", we
obtain the standard MHD equilibrium equation
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$̂&hê + hî +
V̂i

2

2
' =

$̂ $ B̂

n̂
$ B̂ + Vî $ !$̂ $ Vî" . !15"

In a flow-free equilibrium !Vî=0", the ion Eq. !14" demands
the ion pressure to be balanced only by the electric potential,
i.e., #̂+hĵ =0 so that the ions are confined by the electric
potential #then Eq. !13" reduces to the ion Bernoulli condi-
tion Eĩ=0$. The electric field transfers the ion pressure to the
electrons, and the total pressure is balanced by the Lorentz
force on the electrons.

Ion-inertia regime. If )i,1, the ion flow Vî and the po-
tential #̂ are not forced to degenerate into the aforemen-
tioned MHD equilibrium, but have the potential to create
diverse structures. By Eq. !14", Vî must be at least of order
)i!#̂+hî". Unlike the MHD limit, #̂ is freed from hî. If
#̂,0 !more precisely, $̂#̂,0", Vî,)ihî,)i+i #see Eq. !9"$.
We will attempt to show, in Sec. III B, that the low-density
RT-1 plasma is in this regime.

If )i+i is of order 1, the ion Eq. !14" becomes nonlinear
with respect to Vî, and, then, a variety of interesting struc-
tures may be sustained.2,12 The ultimate relaxed !but non-
trivial" equilibria will satisfy the Bernoulli–Beltrami condi-
tions by both ions and electrons,7–9 i.e., the gradient and the
nongradient forces in the electron and ion Eqs. !13" and !14"
vanish independently,

#̂ − hê = 0, !Vî − )i$̂ $ B̂/n̂" $ B̂ = 0,

#̂ + hî + V̂i
2/2 = 0, Vî $ !B̂ + )i$̂ $ Vî" = 0.

Note that this solution has a finite Vî, generalizing the previ-
ous degenerate ion Bernoulli condition.

We also note that the Taylor relaxed state13 is the real-
ization of the electron Bernoulli–Beltrami conditions !Eẽ=0
and Ve$Bẽ%Ve$B=0" with the degenerate ion Bernoulli–
Beltrami conditions !Eĩ=0 and Vi=0".14 This configuration
does not confine the plasma, i.e., the magnetic field exerts no
force on the plasma.

B. Experimental observation in the ion-inertia range

As described in the Introduction, the RT-1 plasma, oper-
ating at low-density !!1017 m−3", is characterized by
large he !!10−14 J", small hi !!10−17 J", and small
e# !!10−17 J". The ion-inertia length "i is about 1 m, which
is longer than the characteristic length scale of the pressure
gradient !L0=0.05–0.2 m". Thus, the scaling parameter
)i=5–20, implying that the ion-inertia range determines the
global structure.

Figure 3 shows the spectroscopic measurements of the
ion temperature and the toroidal !azimuthal" ion flow veloc-
ity near the center of the confinement region !major radius
%0.6 m, where B%2$10−2 T; see Fig. 1". We find that
Vi !in the direction perpendicular to B" is approximately pro-
portional to Ti. We may analyze the ion Eq. !14" as follows.
Since Vî is small, we may neglect the nonlinear terms and

estimate Vî%)i!#̂+hî" with the appropriate choices of L0 and
B0. Translating back to physical units, we obtain a familiar
expression,

Vi#m/s$ %
##V$ + !5/2"Ti#eV$

B#T$ $ L#m$
,

where L is the length scale of the local gradient. In Fig. 3, the
solid and dashed lines show the diamagnetic drift velocity
!5 /2"Ti / !BL" with B=2$10−2 T, L=0.2 m !solid line", and
L=0.1 m !dashed line". For the vacuum magnetic field,
B / -$B- is approximately 0.2 m. The pressure has a steeper
gradient. By fitting multichannel magnetic measurements,
we typically have L%0.1 m.

The electric field also makes same-order contribution to
the ion flow !so-called E$B drift". As shown in Fig. 4, the
potential has a nonmonotonic profile, yielding a complicated
drive of the flow. The point is that #̂ does not balance hî and
cancel Vi !as the ideal MHD model demands"; their decou-
pling allows the emergence of Vî of the order of )ihî.

In this parameter range, the nonlinear terms #$̂!V̂i
2 /2"

and Vî$ !$̂$Vî"$ in the ion equation are negligible. How-
ever, Vî approaches 1 !i.e., Vi reaches the Alfvén speed" if
hĵ ,+i becomes of the order of )i

−1,0.1, and then the non-
linear terms become comparable to the linear terms !see
Refs. 15 and 16 for experimental observations of rapidly
rotating plasmas and also Ref. 17 for theoretical examination
of the two-fluid effect in the pedestal of the pressure profile".

The electron equilibrium condition is more nontrivial.
For negligible #̂ and Vî /)i, the electron Eq. !13" reduces to
the standard MHD equilibrium equation !with negligible ion
enthalpy". However, the neglect of the electron-inertia may
not be always appropriate. In the next section, we will inves-
tigate the electron-inertia effect and show that interesting
new equilibria stem when Eq. !13" is corrected for electron-
inertia.

IV. HOT ELECTRON CONFINEMENT

A. Equilibrium condition in the electron-inertia regime

In the hot electron low-density regime, we may not ne-
glect the electron-inertia. To study this regime, we will use
the electron equilibrium Eq. !10" with the choice V0=c and
L0="e=c /'pe. The unit energy density is mec2

!%0.5 MeV", by which we normalize e# and he. Then, Eq.
!10" may be rewritten as

$̌&#̌ − ȟe −
V̌e

2

2
' − V̌e $ (&'ce

'pe
'B − $̌ $ V̌e) = 0. !16"

In this context, Ampere’s law, neglecting the ion current,
takes the form

&'ce

'pe
'$̌ $ B̌ = − ňV̌e. !17"

For the plasma parameters relevant to the RT-1 experi-
ments, we estimate ȟe,0.01 and the scaling parameter
'ce /'pe%0.1. To satisfy Eq. !16", then, we need V̌e of order
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0.1; evidently the kinetic pressure term !$̌V̌e
2 /2" and the vor-

ticity term #V̌e$ !$̌$ V̌e"$ are comparable to the thermal
pressure !$̌ȟe" and the magnetic #!'ce /'pe"V̌e$ B̌$ terms.

We will now explore different solutions of Eqs. !16" and
!17". We find that the electron Bernoulli–Beltrami solution
can show extreme diamagnetism, that is, the plasma can sus-
tain very large pressure gradients.

B. Generalized Bernoulli–Beltrami equilibria

As described in Sec. II A, the Bernoulli–Beltrami equi-
librium pertains when both terms of equilibrium condition
!16" independently vanish,

$̌&#̌ − ȟe −
V̌e

2

2
' = 0, !18"

V̌e $ (&'ce

'pe
'B̌ − $̌ $ V̌e) = 0. !19"

The Beltrami condition !19" is equivalent to

&'ce

'pe
'B̌ − $̌ $ V̌e = *V̌e, !20"

where * is a scalar function such that $̌ · !*V̌e"=0 !the di-
vergence of B̌ must be zero". By weakening the complete
alignment of the current −V̌e and the generalized magnetic
field !'ce /'pe"B̌− $̌$ V̌e, we may generalize Eq. !20" to en-
compass broader classes of equilibria; here we put

&'ce

'pe
'B̌ − $̌ $ V̌e = *V̌e + -&'ce

'pe
'B̌ . !21"

Then the equilibrium condition !16" reads as

$̌&#̌ − ȟe −
V̌e

2

2
' − -&'ce

'pe
'V̌e $ B̌ = 0. !22"

We comment on the generality/specialty of the equilib-
rium condition !22". In the general equilibrium Eq. !16", the
vector #!'ce /'pe"B̌− $̌$ V̌e$ is divergence-free, thus it can
be represented by two scalar functions. We may regard that
* and - in Eq. !21" correspond to these two degrees of
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FIG. 5. !Color online" Electron diamagnetic equilibrium !*=0, -=0.9".
The diamagnetic electron current modifies B̌. from the vacuum magnetic
field B̌vac.
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FIG. 6. !Color online" Ultra-high-beta electron Bernoulli–Beltrami equilib-
rium !*=0, -=0". When *=0, the electron vorticity cancels the magnetic
field to make the effective !generalized" magnetic field zero. Such a field
structure is strongly diamagnetic and confines very high-beta electrons.
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freedom, if B̌ and V̌e are not parallel.18 The parallel case is,
indeed, not included in Eq. !22", but it is not relevant here;
we do not observe an appreciable parallel current −ňV̌e . B̌
that will produce a toroidal magnetic field.

C. Cylindrical-geometry solutions

In this subsection, we solve Eqs. !17", !21", and !22" for
an axisymmetric system assuming * and - to be constants.

Denoting B̌̌= !'ce /'pe"B̌, the determining equations are !in
r-.-z cylindrical coordinates"

#rV̌ez = − !1 − -"B̌̌. − *V̌e.,

#rV̌e. + r−1V̌e. = !1 − -"B̌̌z + *V̌ez,

#rB̌̌z = ňV̌e.,

#rB̌̌. + /r−1B̌̌. = − ňV̌ez,

#r#ȟe + !V̌ez
2 + V̌e.

2 "/2$ = -!V̌ezB̌̌. − V̌e.B̌̌z" ,

where / is a positive constant that controls the geometric
decay of the magnetic field !if /=2, B0r−2 simulating the
dipole magnetic field". We have omitted #̌ which is negli-
gible in comparison with ȟe !so the ion equation is decoupled
from the electron equation".

The region near the plasma edge !r,0.5 m" is the sub-
ject of interest. For typical parameters, we calculate "e
,0.02 m !n0,1017 m−3" and 'ce /'pe,0.1. The density
ň!r" is assumed to be a rapidly decreasing function,

ň!ř" = ňedge exp#− !ř − ředge"2$ ,

where we put ňedge=0.2 and ředge=0.5 /"e.
In Fig. 5, we show a relatively conventional diamagnetic

solution !with -=0.9 and *=0". The electron pressure is
primarily balanced by the generalized Lorentz force !includ-
ing the Coriolis force produced by electron vorticity" due to
the toroidal electron flow !current" V̌ez and the generalized
poloidal magnetic field -B̂..

When -=0, the generalized Lorentz force vanishes !Bel-
trami condition", and, then, the electron pressure is confined
purely by the hydrodynamic pressure contributed by V̌e

2 /2
!Bernoulli condition". As shown in Fig. 6, such a Bernoulli–
Beltrami equilibrium has very strong diamagnetism.

A finite * produces couplings between the poloidal and
toroidal components of the magnetic field and flow, produc-
ing a spiral structure. In Fig. 7, we show a solution with
*=0.5 and -=0.

V. SUMMARY

We have made an attempt to understand and interpret the
observed properties of high-beta hot electron plasma pro-
duced on the RT-1 magnetospheric device in terms of the
equilibria accessible to the generalized two-fluid electron-ion
plasma. Because of low-density, the ion-inertia length is
comparable to !or larger than" the macroscopic system size.
Hence, the ion and electron motions are easily decoupled.
Static equilibrium models no longer apply; the ion diamag-
netism causes strong ion flow. Because of the low ion tem-
perature, the ion flow is still in the linear regime, i.e., the
hydrodynamic pressure or the vorticity effect !Coriolis force"
of the ion flow !which are expressed as quadratic terms" are
negligible. Based on the present analysis, however, we ex-
pect that nonlinear structures !approaching to the Bernoulli–
Beltrami state" will emerge when +i,0.1.

On the other hand, electrons may create structures in the
smaller scale hierarchy dictated by the electron-inertia
length. The low-density, low magnetic field edge region sets
the stage for this new creation. Here again we expect that the
nonlinear hydrodynamic pressure and vorticity will play an
interesting role; the Bernoulli–Beltrami state can confine
very high-beta plasmas creating a pedestal-like steep pres-
sure gradient near the plasma edge.
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